Nuclear Structure from Gamma-Ray Spectroscopy

2019 Postgraduate Lectures

Lecture 7: Broken Symmetries

11/20/2018

Broken Symmetries

- Reflection Asymmetry: Octupole Bands
- Handedness: Chiral Bands
- Magnetic Rotation: Shears Bands
- Transitional Nuclei: Critical Points

Reflection Asymmetry

If a nucleus is 'reflection asymmetric' (i.e. the odd multipole deformation parameters are non-zero, e.g. β₃ ≠ 0 is the most important) then the nuclear wavefunction in its intrinsic frame is not an eigenvalue of the parity operator:

$$\Psi^{2}(x, y, z) \neq \Psi^{2}(-x, -y, -z)$$

- If $\beta_3 \neq 0$ for a nucleus it is said to possess octupole deformation
- The deformation can however be static, $\langle \beta_3 \rangle \neq 0$, or dynamic, $\langle \beta_3 \rangle = 0$ (oscillating octopule shape)

Octupole Band Structures

Octupole Vibrations in ²³⁸U

This nucleus shows three octupole vibrational bands with different K values

11/20/2018

Parity Splitting

- For a static octupole shape, the negative parity states are interleaved (midway between) with the positive parity states
- A measure of such a feature is the 'parity splitting', defined as:

$$\delta E = E(I)^{-} - \frac{1}{2} [E(I+1)^{+} + E(I-1)^{+}]$$

- This quantity generally decreases towards zero with increasing spin and suggests that rotation may stabilise the octupole shape
- A similar quantity is the difference in alignment:

$$\Delta i_x = i_x^- - i_x^+$$

Octupole Vibration or Deformed?

 For an octupole vibrational phonon coupled to the positiveparity states:

For a static octupole deformation:

$$\Delta i_{\times} = 0$$

Reflection (A)symmetry

11/20/2018

Electric Dipole Moment

 In a nucleus with octupole deformation, the centre of mass and centre of charge tend to separate, creating a non-zero electric dipole moment

Bands of opposite parity connected by strong E1 transitions occur

Enhanced E1 Transitions

- In heavy nuclei, E1 strengths typically lie between 10⁻⁴ and 10⁻⁷ Wu
- In nuclei with octupole deformation, the E1 strengths can be much higher: 10⁻³ 10⁻² Wu
- The intrinsic dipole moment of an octupole deformed nucleus is:

 $D_0 = C_{LD} A Z e \beta_2 \beta_3$ with the liquid drop constant $C_{LD} = 0.0007$ fm

 In a Strutinsky type approach, macroscopic and microscopic effects can be considered and:
 D = D_{macro} + D_{shell}

11/20/2018

Experimental Dipole Moments

- Experimental values of D₀ can be obtained by measuring B(E1)/B(E2) ratios, related simply to γ-ray energies and intensities
- The B(E1) reduced transition rate is: B(E1;I \rightarrow I-1) = (3/4 π) e²D₀² |(I_i K_i 1 0 | I_f K_f)|²
- The B(E2) reduced transition rate is: B(E2;I \rightarrow I-2) = (5/16 π) $e^2Q_0^2 |\langle I_i K_i 2 0 | I_f K_f \rangle|^2$
- Hence if Q₀ is known (e.g. from the quadrupole deformation β₂) then a value for D₀ can be extracted, i.e:
 D₀ = √[5B(E1)/16B(E2)] Q₀

Simplex Quantum Number

- The only symmetries for a rotating <u>reflection</u> <u>symmetric</u> nucleus are parity p and <u>signature</u> r
- For a <u>reflection asymmetric</u> shape (e.g. octupole) these are no longer good quantum numbers but the nucleus is invariant with respect to a combination of rotation of 180° about the x axis ($R(\pi)$) and change of parity (P)
- The 'simplex' operator is defined as:

S = P R(
$$\pi$$
)⁻¹

with eigenvalues: $s = -pr = \pm i$, ± 1 ($p = s \exp[i\pi I]$)

11/20/2018

Parity Doublets

- For K ≠ 0, four △I = 2 (E2) bands are formed based on states with K[±] and (K+1)[±]
- The simplex quantum number can be used to classify these structures
- For an even-even nucleus:
 - s = +1 describes states (0⁺), 1⁻, 2⁺, 3⁻, 4⁺...
 - s = -1 describes states (0⁻), 1⁺, 2⁻, 3⁺, 4⁻...
- For an odd-A nucleus:

s = +i describes states 1/2⁺, 3/2⁻, 5/2⁺, 7/2⁻,...

s = -i describes states 1/2⁻, 3/2⁺, 5/2⁻, 7/2⁺,...

Parity Doublets in ²²³Th

- The nucleus ²²³Th shows parity doublets
- The two $\Delta I = 2$ bands, shown to the left, are connected by strong E1 transitions and have simplex s = -i
- The two ∆I = 2 bands, to the right, have simplex s = +i
- M1 transitions also connect some of the bands

s = -i s = +i

Octupole Magic Numbers

- Octupole correlations occur between orbitals which differ in both orbital (?) and total (j) angular momenta by 3
- Magic numbers occur at 34, 56, 88 and 134
- Nuclei with both proton and neutron numbers close to these are the best candidates to show octupole effects

11/20/2018

Rotational Invariance

From Kris Starosta (Michigan State University)

Space Inversion Invariance

From Kris Starosta (Michigan State University)

11/20/2018

Chirality (Handedness)

 $|\Psi\rangle = |\Psi\rangle$

 $T|\Psi\rangle = |\langle \psi \rangle$

 $T|\Psi\rangle \neq |\Psi\rangle$

- 'I call any geometric figure, or group of points, <u>chiral</u>, and say it has <u>chirality</u>, if its image in a plane mirror, ideally realised, cannot be brought to coincide with itself' Lord Kelvin 1904
- Examples of chiral systems are found throughout nature and in several disciplines of science
- Axial vectors of angular momenta systems of opposite chirality are related by time reversal

Chiral Geometry

 Spontaneous chiral symmetry breaking can occur in triaxial doubly odd nuclei when there are three mutually perpendicular spin vectors of differing lengths that can form a left-handed or right-handed configuration

Odd-Odd Mass 130 Nuclei

- Region of triaxial shapes (x ≠ y ≠ z)
- Consider the $\pi h_{11/2} v h_{11/2}$ configuration
- 1. The proton Fermi surface lies at the bottom of the $h_{11/2}$ subshell: the proton single-particle j aligns along the <u>short</u> axis
- 2. The neutron Fermi surface lies at the top of the $h_{11/2}$ subshell: the neutron single-particle j aligns along the long axis
- The irrotational moment of inertia is largest for γ = 30°: the core angular momentum aligns along the <u>intermediate</u> axis

Irrotational Moments of Inertia

- This diagram shows the variation of the moments of inertia \Im_k as a function of the triaxiality parameter y
- For a prolate nuclear shape ($\gamma = 0^{\circ}$), $\Im_1 = \Im_2$ and $\Im_3 = 0$
- For $\gamma = 30^\circ$, \Im_2 reaches a maximum and this represents the 'most collective' shape

Chiral Operator

• The chiral operator is a combination of time reversal and rotation by 180°: $\hat{O} = TR_{v}(\pi)$

$$T R_{y}(\pi) \left| \right\rangle = T \left| \right\rangle = T \left| \right\rangle$$

The left-handed and right-handed systems are related to each other by this operator:

$$|L\rangle = \hat{O}|R\rangle$$
 and $|R\rangle = \hat{O}|L\rangle$

- For a prolate nucleus, chiral symmetry is good: $|R\rangle = |L\rangle$
- However, for the triaxial odd-odd case: $|R\rangle \neq |L\rangle$

11/20/2018

Restoration of Chiral Symmetry

 Note that |R> and |L> are not solutions of the nuclear Hamiltonian in the lab frame and chiral symmetry must be restored by forming wavefunctions of the form (similar to the octupole case):

$$|+\rangle = (1/\sqrt{2}) [|R\rangle + |L\rangle]$$

$$|-\rangle = (i/J2) [|R\rangle - |L\rangle]$$

• This leads to the doubling of the states and the occurrence of two (near) degenerate $\Delta I = 1$ bands of the same parity

Chiral Twin Bands

Two near degenerate $\Delta I = 1$ bands of the <u>same</u> parity arise (cf octupole bands: two $\Delta I = 1$ bands of <u>opposite</u> parity)

11/20/2018

Cranking Symmetries

- If the nuclear spin \underline{I} lies along one of the principal axes, one $\Delta I = 2$ band arises
- If the spin lies in the plane defined by two principal axes, one $\Delta I = 1$ band arises
- If the spin moves out of these planes, two degenerate ∆I = 1 bands occur (chiral twins)

Magnetic Rotation

- In spherical lead nuclei, regular bands of intense M1 transitions have been found
- The valence proton and neutron orbitals lie perpendicular to each other and produce a magnetic moment vector that breaks the spherical symmetry of the system and allows 'magnetic' rotation

Shears Mechanism

 In magnetic rotation, higher angular momentum is generated by the <u>reorientation</u> of the neutron and proton spin vectors

- Originally <u>perpendicular</u>, the vectors close like the blades of a pair of shears to generate the higher angular momentum states
- The B(M1) strength decreases with increasing spin as μ_{\perp} decreases

Shears Systematics

Antimagnetic Rotation

- Expected in weakly deformed nuclei
- In ¹⁰⁶Cd the spin is generated by closing the $\pi g_{9/2}^{-1}$ vectors (j_{π}^{-1} bottom diagram)
- Each πg_{9/2} hole combines with one vh_{11/2} particle forming a pair of backto-back shears
- Note that the magnetic moment for this situation is zero, i.e. $\mu_{\perp} = 0$

Antimagnetic Rotation in ¹⁰⁶Cd

 The yrast band appears to stop at 26⁺ with a measured drop in B(E2) values, or collectivity (cf band termination)

Transitional Nuclei

11/20/2018

Interacting Boson Model

- Bosons are constructed from fermion pairs
- Nuclear collective excitations are described in terms of N interacting s (l = 0) and d (l = 2) bosons
- Algebraic model based on U(6) group
- Limits:
 - SU(3) rotational
 - U(5) vibrational
 - O(6) gamma-unstable

Critical Point Symmetries

gamma soft

The Casten Triangle